UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD POLITÉCNICA INGENIERÍA EN ELECTRÓNICA ENFASIS EN ELECTRONICA MEDICA PLAN 2008

PROGRAMA DE ESTUDIOS

Resolución Nº 17/19/06-00 Acta Nº 1007/11/09/2017 - ANEXO 03

IDENTIFICACIÓN

Asignatura : Electrónica Digital I

Semestre : Quinto Horas semanales : 8 horas Clases teóricas 3.1. : 3 horas Clases laboratorio 3.2. : 3 horas Clases prácticas 3.3. : 2 horas Total real de horas disponibles : 128 horas Clases teóricas : 48 horas 4.1. Clases laboratorio : 48 horas 4.2. 4.3. Clases prácticas : 32 horas

II. -**JUSTIFICACIÓN**

Esta asignatura proporciona al estudiante una amplia base para el estudio de los principios de la electrónica digital que se aplican no solamente a los ordenadores sino también a automóviles, comunicaciones, automatización, industrial, control de procesos, etc. y esta enfocado más precisamente a la promoción de las habilidades necesarias en el empleo de los circuitos integrados TTL para construir circuitos digitales.

III. -**OBJETIVOS**

- 1. Convertir números expresados en el sistema decimal a los sistemas binarios, octal y hexadecimal; y de los símbolos y ecuaciones de Boole de las compuertas lógicas fundamentales.
- 2. Aplicar los circuitos estudiados a problemas reales.
- Demostrar habilidad para:
 - 3.1. Tratar algunos circuitos lógicos capaces de sumar, restar, multiplicar y dividir.
 - 3.2. Examinar algunos de los tipos de circuitos Flip-Flop.
- 4. Demostrar destrezas para:
 - 4.1. Realizar conexión de los circuitos integrados.
 - Comprobar el funcionamiento de un circuito lógico integrado en un chip.
 - Montar los instrumentos de laboratorio.

IV. -**PRE-REQUISITO**

1. Electrónica I.

V. -**CONTENIDO**

5.1. Unidades programáticas

- Sistemas y Códigos de numeración.
- Compuertas Lógicas y Álgebra de Boole.
- Sistemas combinacionales.
- Circuito Aritmético.

5.2. Desarrollo de las unidades programáticas

- Representación Numérica:
 - 1.1. Representación Analógica.
 - Representación Digital.
 - Ventajas de las Técnicas Digitales.
 - Limitaciones de las Técnicas Digitales. 1.4.
 - Sistemas de Números Digitales.
 - Representación de cantidades Binarias.
 - 1.6.1. Conversiones de Binario a Decimal.
 - Conversiones de Decimal a Binario.
 - Conversiones de Octal a Decimal. 1.6.3
 - 1.6.4. Conversiones de Decimal a Octal.
 - 1.6.5. Conversiones de Octal a Binario. 1.6.6. Conversiones de Binario a Octal.
 - Sistemas de Numeración Hexadecimal. 1.7.

- 1.7.1. Conversiones de Decimal a Hexadecimal.
- 1.7.2. Conversiones de Hexadecimal a Binario.
- 1.7.3. Conversiones de Binario a Hexadecimal.
- 1.8. Código BCD; Gray.
- Compuertas Lógicas y Álgebra de Boole.
 - 2.1. Circuito Lógicos.
 - 2.2. Compuertas.
 - 2.3. Inversores NOT.
 - 2.4. OR
 - 2.5. AND
 - 2.6. NAND
 - 2.7. Teorema de DeMorgan.
 - 2.8. Teoremas de Boole.
 - 2.9. Inversor Controlado.
 - 2.10. Descripción Algebraica de Circuito Lógicos.
 - 2.11. Evaluación de salidas de Circuito Lógicos.
 - 2.12. Simplificación de Circuitos Lógicos
 - 2.13. Implantación de Circuitos a partir de expresiones Booleana.
- 3. Sistemas Combinacionales.
 - 3.1. Forma de suma de productos.
 - 3.2. Simplificación de circuitos lógicos.
 - 3.3. Diseño de circuito de lógica combinatorios.
 - 3.4. Método de mapa de Karmaugh.
 - 3.5. Circuitos OR; NOR exclusivos.
 - 3.6. Generador y verificador de paridad.
 - 3.7. Circuitos inhibidos.
 - 3.8. Señales de reloj y flip-flop.
 - 3.9. Entradas asíncronas.
 - 3.10. Flip-flop maestro esclavo
 - 3.11. Aplicaciones de flip-flop.
 - 3.12. Sincronización de flip-flop.
 - 3.13. Transferencia de datos en serie. Registros de corrimiento.
 - 3.14. Multivibrador monoestable.
 - 3.15. Multivibrador astable.
- Circuito Aritmético.
 - 4.1. Suma Binaria.
 - 4.1.1. Representación de números con signo.
 - 4.1.2. Sumas en el sistema complemento a 2.
 - 4.1.3. Multiplicación de números binarios.
 - 4.1.4. Suma de BCD.
 - 4.1.5. Circuitos aritméticos.
 - 4.1.6. Sumador binario en paralelo.
 - 4.1.7. Diseño de un sumador completo.
 - 4.1.8. Sumador en paralelo de circuito integrado.
 - 4.2. Circuitos integrados aritméticos complejos.
- 5. Tecnologías digitales.
 - Terminología de circuitos integrados diditales.
 - 5.2. La familia lógica TTL.
 - 5.2.1. Características estándar de la serie TTL.
 - 5.2.2. Características mejoras de la serie TTL.
 - 5.3. Circuitos integrados MOS digitales.
 - 5.4. EI MOSFET.
 - 5.5. Características de la serie CMOS.

VI. - ESTRATEGIAS METODOLÓGICAS

- 1- Utilización de diferentes técnicas para exponer la teoría
- 2- Demostración.
- 3- Experimentación.
- 4- Prácticas de laboratorio.
- 5- Aclaración de experimentos

VII. - MEDIOS AUXILIARES

- 1. Pizarra y pinceles, borrador.
- 2. Equipo multimedia.
- 3. Equipos e instrumentos de laboratorio.
- 4. Componentes electrónicos.

VIII. - EVALUACIÓN

- Requisitos para el examen final.
 - 1.1. Dos pruebas parciales (50%).
 - 1.2. Informes de laboratorio (30%).
 - 1.3. Asistencia a la clases prácticas (20%).
- Examen final.
 - 2.1. El examen final representa el 60% de la nota final.
 - 2.2. La calificación acumulada para el derecho a examen representa el 40% de la nota final.
- Calificación final.
 - 3.1. La calificación final estará de acuerdo a la escala establecida por el Consejo Directivo de la Facultad Politécnica.

IX. - BIBLIOGRAFÍA

Roc	car

- Electrónica Digital Fundamental. Donate A. Hermosa. Coedición Alfaomega-Marcombo, 1995.
- ☐ Electrónica Digital Práctica. Donate A. Hermosa. Coedición Alfaomega-Marcombo 1996.
- Manual de Prácticas de Electrónica Digital. Enrique Mandado. Coedición Alfaomega-Marcombo.
- Principios y Aplicaciones Digitales. Malvino, Albert Paul 1995. Editorial: Marcombo.
- Sistemas Digitales Principios y Aplicaciones. Ronald J. Tocci,. Editorial: Prentice may.

Complementaria.

- Sistemas Digitales y Analógiacos Transformadas de Fourier. Estimación Espectral. Atanasio Papoulis, Marcombo.
- ☐ Sistemas Electrónicos Digitales. Enrique Mandado. Coedición Alfaomega-Marcombo.
- ☐ Tablas de Equivalencia, Circuitos Lógicos, Serie 74 TTL y CMOS, Diccionario en 6 idiomas. Andreas Roth. Editorial Alfaomega.

MATERIALES BIBLIOGRÁFICOS DISPONIBLES EN LA BIBLIOTECA DE LA FACULTAD POLITÉCNICA

- □ Boylestad, R. L. & Nashelsky, L. (2009). Electrónica : teoría de circuitos y dispositivos electrónicos. (10° e.d.). Mexico : Prentice
- García Zubía, J. (2003). Problemas resueltos de electrónica digital. Mexico: Thomson.
- □ Kanazawa, F. (2008). Prácticas de laboratorio : electrónica digital I. San Lorenzo : Facultad Politécnica UNA.
- Perozzo, J. (1996). Reparación de averías electrónicas : electrónica integrada, analógica y digital. (Vol. 2). Madrid : Paraninfo.
- □ Tokheim, R. L. (2008). Electrónica digital : principios y aplicaciones. (7° e.d). Mexico : McGraw-Hill.

RECURSOS DISPONIBLES A TRAVÉS DE CICCO

- Luo, F. L., Ye, H., & Rashid, M. H. (2005). Digital Power Electronics and Applications. London: Academic Press.
- Patrick, D. R., Fardo, S. W., & Chandra, V. (2008). Electronic Digital System Fundamentals. Liburn, GA: Fairmont Press.
- □ Singmin, A. (2000). Beginning Digital Electronics Through Projects. Burlington: Newnes.