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Abstract

Bandwidth fragmentation is a critical problem for Elastic Optical Networks (EON), and spectrum defragmentation is the most important
strategy to mitigate this phenomenon. In this work we propose a Machine Learning (ML) based method for estimating the Blocking Rate,
which, when exceeding a threshold, triggers a defragmentation process. This is done in order to achieve better results in terms of the number
of blocking demands and the number of re-routed connections. The performance of the proposed method was compared with two other known
strategies: fixed-time (FT) defragmentation, and triggering based on one fragmentation metric (BFR). Simulation results were evaluated using
two multi-objective metrics. Experimental results show that the proposed method is more efficient than the other two, being the best method
in 85.7% of comparisons using the Pareto Coverage metric, and obtaining 47.4% of non-dominated solutions in the Pareto Front.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The ever-increasing popularity of the internet and web-
based services, such as Content Delivery Networks (CDN)
and Video on Demand (VOD), has produced a vast growth of
the bit rate demands on computer network carriers. This new
reality forces us to study new and ad-hoc technologies related
to the transmission of data [1] to deal with the saturation of
the capacity of current optical networks, a phenomenon known
as “capacity crunch”.

The coarse bandwidth granularity of traditional and current
optical Wavelength Division Multiplexing (WDM) networks
leads to inefficient use of spectrum since each bit rate demand
is assigned to a fixed spectrum portion even if it might re-
quire lower bandwidth. This disadvantage gives rise to Elastic
Optical Networks (EON) [2], which arise as a solution to the
aforementioned problem, providing greater flexibility in the
division of the spectrum, and, therefore, the requirements can
be allocated more efficiently.

Due to dynamic traffic, and continuity and contiguity con-
straints in transparent or all-optical networks, the phenomenon
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called Bandwidth Fragmentation [3] emerges. It occurs when
available Frequency Slots (or FSs) are found separated in the
link spectrum forming isolated blocks. These blocks could
be unusable for new connections because they are not able
to meet the demand due to the restrictions mentioned above,
consequently, demand blocking probability [4] increases con-
siderably.

The fragmentation problem of EON networks has been
widely studied in the current literature and several strategies
have been proposed to mitigate it. The main approach con-
sists in executing a Spectrum Defragmentation process [5]
periodically. Defragmentation consists of the reconfiguration
or re-routing of a sub-set of connections already established
within the network in order to reduce spectrum fragmentation
by removing non-contiguous free FS blocks.

Considering proactive approaches to solve the problem
of fragmentation, we found that spectrum defragmentation
processes sometimes execute in periods where they are not
entirely necessary. That is, the network is in a state of low
fragmentation and a low connection request rejection rate,
which causes inefficient defragmentation, a greater number of
connection cuts, and an unnecessary increase in processing
costs.

Machine Learning (ML) is a branch of Artificial Intelli-
on process in Elastic Optical Networks using Machine Learning techniques, ICT Express (2023),

gence based on the idea that computational systems can learn
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from data and identify patterns with no human intervention.
ML techniques were already being used in optical network
problems, as seen in [6].

In the following sections, we present a novel ML based
estimator for blocking rate which is implemented with Ma-
chine Learning techniques. This is used as a trigger for the
defragmentation process. It takes the instant value of several
fragmentation metrics of the EON as an input for an Artificial
Neural Network and estimates a parameter that can be seen
as a blocking rate for future time periods. Simulations verified
the efficiency of this approach in terms of number of blocked
demands and number of reconfigurations when compared to
periodic processes and other methods which consider the value
of one fragmentation metric.

This work is organized as follows: Section 2 is a brief
review of previous works about how to trigger the defrag-
mentation process and different applications of ML techniques
to EON-referred problems. Section 3 shows our proposed
method to trigger the defragmentation process, while Sec-
tion 4 presents an application example. Section 5 summarizes
conclusions and future work proposals.

2. Previous works

2.1. Triggering of the defragmentation process

There are a few works in the literature that analyze the trig-
gering of the defragmentation process. Authors of [7] present
an analysis of periodic defragmentation in EON networks. The
approach consists of carrying out the defragmentations in fixed
periods, each N time slot, with the main objective of finding
optimal values of N. This type of defragmentation in fixed
periods is widely used in research such as [8,9], among others.
Our work uses this technique in order to compare the results
with our method.

Authors of [10] propose a mechanism to trigger the defrag-
mentation process based on the value of the High-slot Mark
(HM) which indicates the maximum value of an occupied
slot in the network. The defragmentation process is triggered
randomly when the value of HM is greater than the value
of H Mmax which was previously defined. For the triggering
process in our proposed method, a set of features that indicate
the current state of the network is used, in which the High-slot
Mark is included, also called Maximum Slot Index (MSI).

Authors of [11] combine the reactive and the proactive
approach to determine the period in which the defragmentation
process will be executed. For proactive defragmentation, the
proposed method uses the number of released connections as
a trigger, so it can be deemed periodic.

Finally, the authors of [12] present a complete analysis
of the EON network defragmentation problem. To determine
when to reconfigure, they propose a triggering algorithm that
considers the instantaneous blocking rate in a previous period
of time and the bandwidth utilization. They trigger defragmen-
tation when these indicators overpass certain values, and when
the network encounters a growth in bandwidth utilization.
Instead, our method seeks to avoid exceeding this blocking rate
2

threshold by triggering the defragmentation process before this
happens.

In the following sections, we present an ML-based estima-
tor of intelligent triggering, which takes into account numerous
factors such as metrics of network fragmentation, network
utilization, and demand blocking.

2.2. Machine learning in EON networks

Machine Learning is a branch of artificial intelligence that
builds a mathematical ML-based estimator from sample data,
known as training data. In the context of EONs, this has been
defined through three paradigms [6]: Predictions, decision-
making, and regressions. This allows the collected data to be
used to perform these tasks without having been explicitly
programmed to perform such a task before. For example,
in the predictions paradigm, the evaluation and forecast of
QoS [13] can be done with a well-planned data collection.
In the decision-making paradigm [14], the authors proposed
a Deep Reinforcement Learning (DRL), to develope an au-
tonomous ML-based estimator of Routing, Modulation, and
Spectrum Assignment (RMSA) in EON and multi-band EON,
using dense neural networks to process the feature’s extraction
of the EONs they proposed. Therefore, the DRL agent can in-
teract with the environment and learn the policy to allocate the
optical resource. In the regression paradigm, in [15] real traffic
data is used in different topologies, relating them through an
ML-based estimator using a logarithmic regression as a basis
to approximate common patterns for routing.

In the area of interest of this work, we find some research
that solves the problem of fragmentation but focuses on an-
other type of network, such as the one presented in [16], which
is focused on Space Division Multiplexing Elastic Optical
Networks (SDM-EON). They used Elman neural networks for
predicting traffic in order to mitigate fragmentation and the
problem of cross-talk.

In [17] the authors propose a defragmentation algorithm
training using an unsupervised learning approach, so it does
not require prior knowledge of the network. The algorithm
is responsible for identifying those lightpaths that can be
grouped based on a certain feature, in order to later map those
groups and reorder the spectrum without the need to perform
re-routes.

To the best of our knowledge, no previous work has been
done that applies ML techniques to seek the best moment to
begin a defragmentation process, which is the objective of our
work.

3. Proposed methodology to create the ML-based
estimator of blocking rate for EON

In this work, an estimator based on an artificial neural
network (ANN) is proposed to perform a regression to provide
a value of the blocking rate B Rt , given a set of the EON’s fea-
tures. A defragmentation process is triggered if the estimator
indicates that this parameter exceeds a certain threshold. With
this, we avoid the network performance from being affected.
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To create the estimator, a 3 stage methodology is proposed.
These are: Stage 1: A database containing fragmentation
metrics and bandwidth utilization (detailed in Section 3.1)
obtained via simulation must be created, which must consider
several network topologies at different traffic loads, measuring
the blocking rate given a certain period of time; Stage 2: A
raction of the created database (training database) must be
sed to train a neural network in order to periodically predict
he blocking rate, given a set of features of the EON’s at that

oment as an input of the estimator; Stage 3: The ML-based
stimator must be validated with a database not used through
he training of the estimator. The validation database must
e used to perform hyperparameter adjustments to the ML-
ased estimator. After performing the training validation, the
L-based estimator is ready to be tested. The sections below

rovide more details about the different stages.

.1. Stage 1: Database creation via simulation

To get the data for training the neural network, a discrete
vent simulator that considers the features and metrics indi-
ated in the context of a dynamic EON operation for different
opologies must be used. The generation of connection require-

ents and releases must be performed with different traffic
oads and patterns as a function of time, like tidal traffic

odeling for suburban, commercial, and cloud internet traffic
18].

The fragmentation metrics that must be used as features
re the following: (i) Utilization entropy (UE) [19], (ii) Shan-
on entropy (SHF) [20], (iii) Bandwidth Fragmentation Ratio
BFR) [21], (iv) Maximum Slot Index (MSI), and (v) Spectrum
onsecutivity (EC) [22].

An applied feature related to the network bandwidth uti-
ization metric is Network Utilization (NE): defined as the
uotient between the sum of all the occupied FSs at a certain
oment, and the total number of FSs in the network. A feature

elated to the instant blocking metric is the Total of blocked
Ss (BFS): value that shows the sum of the FSs required by
locked demands in a D demands size of a window of already
rocessed demands prior to the current period of time.

Data pre-processing must be considered in order to clean
he data and calculate the blocking rate, considering a time
indow ∆T .
The created database must be split into two batches, the first

ne for training (Stage 2), and the second one for validation
Stage 3).

.2. Stage 2: Creation and training of the ML-based
stimator

An ANN architecture for the ML-based estimator must
e defined considering seven inputs, which are the features
xtracted from the training data set. An initial combination of
number of hidden layers and neurons for each layer must

e defined, to be tuned during the validation process (Stage
). For the output of the ANN, an activation function

ust be used, which must allow to return the value of the
 p
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regression estimating the value of B Rt . It is defined as the rate
of blocking in D future demands. For the training process, as
the value of the blocking rate to estimate is already known
(output of Stage 1), it is necessary to calculate a metric to
relate the difference between the estimated value of the ML-
based estimator and the real value of the B Rt in the training

atabase. For this coarse fit of the estimator, a sufficient
umber of epochs must be considered, until the value of the
raining error metrics stops improving. The weights of the
NN obtained during the training process must be saved.
hese parameters are the ones that will define the initial
stimator adjustments in stage 3.

.3. Stage 3: Validation of ML-based estimator

To verify the effectiveness of the estimator it is necessary
o use the validation database (which was not included in
he training) to make predictions of the blocking rate. To en-
ure greater accuracy in the regression task, a hyperparameter
djustment process using a neural architecture search (NAS)
ethod for the ML-based estimator must be done, considering

raining error metrics using the same method of Stage 2 that
alculates the error between the estimate done by the model
nd the real value in the validation database.

With these two parameters, the ANN’s hyperparameters
ust be defined to get better regressions with the best ML-

ased estimator according to these last values. For this adjust-
ent, a grid search is a great guide to define the hyperparam-

ters [23].

. Application example

.1. Creation, training and validation of the ML-based
stimator

Considering the methodology proposed in Section 3, an
L-based estimator was designed, starting with a database

reation which was divided according to parameters shown
n Table 1. This considered a total of 120,000 demands per
imulation. For the creation and training process (Stage 2),
n initial model of 7 inputs and a single layer of 16 neurons
as considered. The training error metrics used are mean

bsolute error (MAE) and mean square error (MSE). The
onsidered number of epochs was 10.000 before the training
tops. For the validation process (Stage 3), the NAS method
sed was the Grid Search [26]. The final architecture after the
yperparameters tuning is an ANN with an input layer with
inputs, two fully connected layers of 64 and 32 neurons

ach, considering all the layers using a ReLu [26] activation
unction. This model obtained an MAE and MSE equal to,
.0239 and 0.002, respectively.

.2. Using the ML-based estimator in the defragmentation
riggering process

To prove that the ML-based estimator proposed can im-
rove the defragmentation trigger process, it has been im-

lemented in a simulator [8] (considering 40,000 connection
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Table 1
List of parameters considered for the ML-Based estimator creation process.

Stage 1 Database creation

Discrete event simulator EON simulator developed in [8]
Resource allocation algorithm Fragmentation-aware Routing and

Spectrum allocation (FA-RSA) [24]
Fragmentation Metrics UE, SHF, BFR, MSI, EC
Bandwidth utilization metrics NE
Instant blocking metric BFS
Topologies USNet, NSFNet
Traffic pattern Tidal traffic modeling: Suburban,

Commercial and Cloud [18]
Traffic load 100 to 700 Erlangs
FSs per link 320 FSs
FSs slot required by demand Randomly between 1 and 8 FSs
D-demand window size 30
Pre-processing ∆T 10
Database split 70% for train, 30% for validation [25]

Stage 2: Training the ML-based estimator

ANN inputs Metrics of Stage 1
ANN Output Blocking rate estimation
Activation function Regression Task domain
Epochs Until Training error metrics stops

improving.

Stage 3 Validation

Training error metrics MAE, MSE.
NAS Grid Search [23]

requests) to estimate a value of B Rt in a future number of
demands D in the NFSNet topology with different traffic
patterns (suburban, commercial, and cloud). This traffic is
different from the one used in Stage 2. If this estimated value
exceeds a threshold value B Rth , the defragmentation process
is triggered. For the defragmentation process, the genetic
algorithm proposed in [8] was applied.

The proposed method (PM) is compared with two other
known methods for triggering: (i) Fixed-time (FT) defrag-
mentation, which consists of defragmenting the network every
certain constant number of units of time. (ii) BFR defragmen-
tation, which consists of defragmenting when the BFR frag-
mentation metric reaches a specific threshold value B F Rth .

Each method has its own parameter for triggering the
process of defragmentation and during the tests, this parameter
is changed three times. Then each scenario was repeated
five times. This produces the same number of solutions for
each method. The parameter values were chosen by taking
as a base the number of defragmentations that the fixed-time
method performs, and looking for a way in which they perform
similar amounts of defragmentations. In this way, we make the
comparison as fair as possible. In this example of application,
we consider the threshold values shown in Table 2.

Table 2
Threshold values for defragmentation triggering.

Defragmentation method Threshold value

PM B Rth : 0.39, 0.40, 0.41
FT Times units: 100, 150, 200
BFR B F Rth : 0.81, 0.82, 0.83
4

Fig. 1. Solutions for NSFNET topology considering a suburban internet
pattern traffic [18].

4.2.1. Objective functions to analyze
For the evaluation of the results, we considered two global

objective functions, measured at the end of each simulation: (i)
Number of blocked demands (BL): The sum of the blocked
requests during the simulation. (ii) Number of reconfigura-
tions (RC): Number of reconfigured connections during the
defragmentation process carried out in the simulation. In this
context, a solution is a pair of values for the two objective
functions, the result of the simulation execution using this
method, and a determined triggering parameter. The goal is
to achieve solutions that have fewer blocked requests and
connection reconfigurations. However, the improvement of one
objective function could mean the worsening of the other.

Two multi-objective metrics were considered: (i) Number
of solutions in the combined Pareto Front (SPF): It indicates
the number of solutions that the considered method contributes
to the combined Pareto Front (formed with non-dominated
solutions of all methods). The quotient of this number with
the total number of solutions in the combined Pareto Front is
also known as the Contribution metric [27].(ii) Pareto Cov-
erage (PC) [28]: This performs the comparison of the Pareto
front solutions of the proposed method with the Pareto front
solutions of the other methods, taking them in pairs.

4.2.2. Results analysis
In Figs. 1 to 3 we can observe the results for the three

different types of traffic patterns applied to NSFNet topology.
The Pareto Front is shown as a blue line. A predominance of
the proposed method can be seen, in terms of the number of
solutions, in two of the three traffic variation types.

The experiments carried out, show that all of the experi-
mental instances found in the combined Pareto Front get the
following values: P M = 9, FT = 4 and B F R = 6. The
proposed method (PM) in this work represents 47.4% of the
points within it, which indicates that this strategy produces
more non-dominated (and better) solutions. It is an indicator
of greater efficiency in terms of minimizing the number of

blockages and the number of reconfigurations in the network.
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Table 3
Pareto Coverage for NSFNET topology.

NSFNET

Traffic A B C(A,B) C(B,A) Conclusion

Suburban PM FT 0.25 0 A covers B by 25% and is covered by 0%
Suburban PM BFR 0.43 0 A covers B by 43% and is covered by 0%
Commercial PM FT 0 0.29 B covers A by 29% and is covered by 0%
Commercial PM BFR 0.33 0.43 A covers B by 33% and is covered by 43%
Cloud PM FT 1 0 A covers B by 100% and is covered by 0%
Cloud PM BFR 0.67 0 A covers B by 67% and is covered by 0%
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Fig. 2. Solutions for NSFNET topology considering a commercial internet
pattern traffic [18].

Fig. 3. Solutions for NSFNET topology considering a cloud internet pattern
traffic [18].

Considering the BL values shown in Figs. 1 to 3, the network
blocking probability is around to 10−2.

Table 3 presents the results of the PC metric [28]. In
85.7% of all comparisons, the proposed method obtains greater

coverage in the optimal solutions in the NSFNet topology.

5

5. Conclusions

A Machine Learning (ML)-based method for estimating
the blocking rate (B Rt ) in a dynamic EON was proposed.
This estimator is used to trigger a defragmentation process,
which when exceeding a threshold value of B Rth , triggers

defragmentation process to reach better results in terms of
he number of blocking demands and the number of re-routed
onnections.

To evaluate the efficiency of the proposed triggering method,
hree different scenarios were considered with a variable
olume of traffic and using the NSFnet topology. The objective
unctions to be optimized were: (i) the number of blockings for
certain test instance, and (ii) the number of reconfigurations,
one by the defragmentation processes, at the end of each test
nstance.

Experimental tests were carried out to compare our method
f triggering against two others taken from the literature: (i)
ixed-time defragmentations, which is a widely used strategy,
nd (ii) triggering defragmentations considering the current
alue of a single fragmentation metric (BFR).

To compare the results obtained concerning the aforemen-
ioned objective functions, two performance metrics were used
or multi-objective optimization: (i) Number of solutions in
he Pareto Front (SPF) and (ii) Pareto Coverage (PC). As

result of comparing the methods based on the previously
tated objectives, it is concluded that the proposed method
s better since it achieves better results in most scenarios,

inimizing the values obtained for BL and RC. Considering
he SPF metric, it is obtained that it constitutes 47.4% of
on-dominated solutions and in the case of PC, it achieved
avorable results to the proposed method in 85.7% of the total
omparisons made.

Further research is recommended in order to carry out a
reater number of experiments, considering different topolo-
ies, physical phenomena, and neural network architectures,
mong others. This will allow us to generate general recom-
endations.
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E. Dávalos, J.-L. Enciso, N. Silva et al. ICT Express xxx (xxxx) xxx
Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

Financial support from projects: ANID Doctorado Nacional
(2022-21220867), is gratefully acknowledged.

References
[1] M. Aibin, K. Walkowiak, Defragmentation algorithm for joint dynamic

and static routing problems in elastic optical networks with unicast
and anycast traffic, in: 2016 International Conference on Computing,
Networking and Communications, ICNC, IEEE, 2016, pp. 1–5.

[2] M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matsuoka,
Spectrum-efficient and scalable elastic optical path network: Architec-
ture, benefits, and enabling technologies, IEEE Commun. Mag. 47 (11)
(2009) 66–73.

[3] B.C. Chatterjee, N. Sarma, E. Oki, Routing and spectrum allocation
in elastic optical networks: A tutorial, IEEE Commun. Surv. Tutor. 17
(3) (2015) 1776–1800.

[4] W. Shi, Z. Zhu, M. Zhang, N. Ansari, On the effect of bandwidth
fragmentation on blocking probability in elastic optical networks,
IEEE Trans. Commun. 61 (7) (2013) 2970–2978.

[5] B.C. Chatterjee, S. Ba, E. Oki, Fragmentation problems and manage-
ment approaches in elastic optical networks: A survey, IEEE Commun.
Surv. Tutor. 20 (1) (2017) 183–210.

[6] R. Gu, Z. Yang, Y. Ji, Machine learning for intelligent optical
networks: A comprehensive survey, J. Netw. Comput. Appl. 157 (2020)
102576.

[7] J. Comellas, L. Vicario, G. Junyent, Periodic defragmentation in
elastic optical networks, in: 2018 20th International Conference on
Transparent Optical Networks, ICTON, IEEE, 2018, pp. 1–4.

[8] E.J. Dávalos, M.F. Romero, S.M. Galeano, D.A. Báez, A. Leiva,
B. Baran, Spectrum defragmentation in elastic optical networks:
Two approaches with metaheuristics, IEEE Access 7 (2019)
119835–119843.

[9] J. Luo, Z. Zhang, W. Sun, W. Hu, Partial defragmentation in flex-
ible grid optical networks, in: Asia Communications and Photonics
Conference, Optical Society of America, 2012, pp. AF4A–54.

[10] Y. Takita, K. Tajima, T. Hashiguchi, T. Katagiri, Wavelength defrag-
mentation with minimum optical path disruptions for seamless service
migration, in: Optical Fiber Communication Conference, Optical
Society of America, 2016, pp. M2J–3.

[11] R.V. Fávero, J.S. Marçal, P.C. Silva, L.H. Bonani, M.L. Abbade, A
new elastic optical network defragmentation strategy based on the
reallocation of lightpaths sharing the most fragmented link, in: 2015
SBMO/IEEE MTT-S International Microwave and Optoelectronics
Conference, IMOC, IEEE, 2015, pp. 1–5.

[12] M. Zhang, C. You, H. Jiang, Z. Zhu, Dynamic and adaptive band-
width defragmentation in spectrum-sliced elastic optical networks with
time-varying traffic, J. Lightwave Technol. 32 (5) (2014) 1014–1023.

[13] T. Panayiotou, K. Manousakis, S.P. Chatzis, G. Ellinas, A data-driven
bandwidth allocation framework with QoS considerations for EONs,
J. Lightwave Technol. 37 (9) (2019) 1853–1864.
6

[14] P. Morales, P. Franco, A. Lozada, N. Jara, F. Calderón, J. Pinto-Ríos,
A. Leiva, Multi-band environments for optical reinforcement learning
gym for resource allocation in elastic optical networks, in: 2021
International Conference on Optical Network Design and Modeling,
ONDM, 2021, pp. 1–6.

[15] S. Troia, A. Rodriguez, I. Martín, J.A. Hernández, O.G. De Dios, R.
Alvizu, F. Musumeci, G. Maier, Machine-learning-assisted routing in
SDN-based optical networks, in: 2018 European Conference on Optical
Communication, ECOC, 2018, pp. 1–3.

[16] S. Trindade, N.L. da Fonseca, Machine learning for spectrum defrag-
mentation in space-division multiplexing elastic optical networks, IEEE
Netw. 35 (1) (2020) 326–332.

[17] Y. Xiong, Y. Yang, Y. Ye, G.N. Rouskas, A machine learning
approach to mitigating fragmentation and crosstalk in space division
multiplexing elastic optical networks, Opt. Fiber Technol., Mater.
Devices Syst. 50 (2019) 99–107.

[18] S. Troia, R. Alvizu, G. Maier, Reinforcement learning for service func-
tion chain reconfiguration in NFV-SDN metro-core optical networks,
IEEE Access PP (2019) 1.

[19] X. Wang, Q. Zhang, I. Kim, P. Palacharla, M. Sekiya, Utilization
entropy for assessing resource fragmentation in optical networks, in:
Optical Fiber Communication Conference, Optical Society of America,
2012, pp. OTh1A–2.

[20] P. Wright, M.C. Parker, A. Lord, Minimum-and maximum-entropy
routing and spectrum assignment for flexgrid elastic optical
networking, J. Opt. Commun. Netw. 7 (1) (2015) A66–A72.

[21] M. Zhang, W. Shi, L. Gong, W. Lu, Z. Zhu, Bandwidth de-
fragmentation in dynamic elastic optical networks with minimum
traffic disruptions, in: 2013 IEEE International Conference on
Communications, ICC, IEEE, 2013, pp. 3894–3898.

[22] Y. Wang, J. Zhang, Y. Zhao, J. Liu, W. Gu, et al., Spectrum
consecutiveness based routing and spectrum allocation in flexible
bandwidth networks, Chin. Optics Lett. 10 (s1) (2012) S10606.

[23] P. Liashchynskyi, P. Liashchynskyi, Grid search, random search,
genetic algorithm: A big comparison for NAS, 2019, arXiv.

[24] Y. Yin, H. Zhang, M. Zhang, M. Xia, Z. Zhu, S. Dahlfort, S.J.B. Yoo,
Spectral and spatial 2D fragmentation-aware routing and spectrum
assignment algorithms in elastic optical networks [invited], J. Opt.
Commun. Netw. 5 (10) (2013) A100–A106.

[25] Q.H. Nguyen, H.-B. Ly, L.S. Ho, N. Al-Ansari, H.V. Le, V.Q. Tran,
I. Prakash, B.T. Pham, Influence of data splitting on performance of
machine learning models in prediction of shear strength of soil, Math.
Probl. Eng. 2021 (2021) 4832864.

[26] R. Livni, S. Shalev-Shwartz, O. Shamir, On the computational effi-
ciency of training neural networks, in: Z. Ghahramani, M. Welling, C.
Cortes, N. Lawrence, K.Q. Weinberger (Eds.), Advances in Neural
Information Processing Systems, Vol. 27, Curran Associates, Inc.,
2014.

[27] H. Meunier, E.-G. Talbi, P. Reininger, A multiobjective genetic
algorithm for radio network optimization, in: Proceedings of the 2000
Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512),
Vol. 1, 2000, pp. 317–324.

[28] C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, L. Salomon, Per-
formance indicators in multiobjective optimization, European J. Oper.
Res. 292 (2) (2021) 397–422.

http://refhub.elsevier.com/S2405-9595(23)00008-5/sb1
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb1
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb1
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb1
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb1
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb1
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb1
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb2
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb2
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb2
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb2
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb2
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb2
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb2
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb3
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb3
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb3
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb3
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb3
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb4
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb4
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb4
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb4
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb4
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb5
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb5
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb5
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb5
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb5
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb6
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb6
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb6
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb6
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb6
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb7
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb7
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb7
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb7
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb7
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb8
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb8
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb8
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb8
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb8
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb8
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb8
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb9
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb9
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb9
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb9
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb9
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb10
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb10
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb10
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb10
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb10
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb10
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb10
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb11
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb11
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb11
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb11
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb11
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb11
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb11
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb11
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb11
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb12
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb12
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb12
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb12
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb12
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb13
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb13
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb13
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb13
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb13
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb14
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb14
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb14
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb14
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb14
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb14
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb14
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb14
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb14
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb15
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb15
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb15
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb15
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb15
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb15
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb15
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb16
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb16
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb16
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb16
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb16
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb17
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb17
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb17
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb17
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb17
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb17
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb17
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb18
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb18
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb18
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb18
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb18
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb19
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb19
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb19
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb19
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb19
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb19
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb19
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb20
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb20
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb20
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb20
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb20
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb21
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb21
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb21
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb21
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb21
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb21
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb21
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb22
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb22
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb22
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb22
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb22
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb23
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb23
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb23
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb24
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb24
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb24
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb24
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb24
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb24
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb24
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb25
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb25
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb25
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb25
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb25
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb25
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb25
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb26
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb26
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb26
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb26
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb26
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb26
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb26
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb26
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb26
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb27
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb27
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb27
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb27
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb27
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb27
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb27
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb28
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb28
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb28
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb28
http://refhub.elsevier.com/S2405-9595(23)00008-5/sb28

	Triggering strategy for defragmentation process in Elastic Optical Networks using Machine Learning techniques
	Introduction
	Previous works
	Triggering of the defragmentation process
	Machine Learning in EON networks

	Proposed methodology to create the ML-based estimator of blocking rate for EON
	Stage 1: Database creation via simulation
	Stage 2: Creation and training of the ML-based estimator
	Stage 3: Validation of ML-based estimator

	Application example
	Creation, training and validation of the ML-based estimator
	Using the ML-based estimator in the defragmentation triggering process
	Objective Functions to analyze
	Results analysis


	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


