UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD POLITÉCNICA INGENIERIA EN ELECTRICIDAD PROGRAMA DE ESTUDIO PLAN 2008

Resolución Nº 17/10/05-00 Acta Nº 998/08/05/2017

I. - IDENTIFICACIÓN

1. Asignatura : Instrumentación Industrial

Semestre : Sexto
 Horas semanales : 5 horas
 1. Clases teóricas : 3 horas
 2. Clases prácticas : 2 horas
 Total real de horas disponibles : 80horas
 1. Clases teóricas : 48 horas
 2. Clases prácticas : 32 horas

II JUSTIFICACIÓN.

Considerando que el profesional ingeniero, debe tener un perfil que pueda permitirle desempeñarse tanto en el diseño, el montaje y la operación de Sistemas de Medición y Control deProcesosIndustriales, y que esta materia aporta las bases del conocimiento de esa importante área de la ingeniería, hace que el desarrollo de esta asignatura, sea imprescindible en la formación del profesional ingeniero.

III OBJETIVOS.

El presente curso, se analizaran: los conceptos, técnicas einstrumentos para la medición y el control de los procesos industriales modernos.

IV PRE-REQUISITOS.

.Electrónica Digital

CONTENIDO.

5.1 Unidades programáticas.

- 1. Introducción
- 2.Control realimentado
- 3. Simbología de Instrumentación
- 4. Diagramas de Instrumentación y Procesos
- 5.Diagrama de Lazos
- 6.Modos de Control
- 7. Sintonía de un Controlador
- 8. Medición de Temperatura
- 9. Medición de Nivel
- 10. Medición de Cauda
- 11. Medición de Presión
- 12. Válvulas de Control

5.2 Desarrollo de las unidades programáticas.

- 1. Introducción
 - 1.1 Qué es medición y Control?
 - 1.2 Definiciones
 - 1.3 Generalidades
 - 1.4 Reseña Histórica
 - 1.5 Desarrollo Cronológico
 - 1.6 Selección de equipos de medición y control
 - 1.7 Rendimiento
 - 1.8 Encerramientos
 - 1.9 Ubicación de los equipamientos
 - 1.10 Provisión de aire
 - 1.11 Provisión eléctrica
 - 1.12 Instalación y mantenimiento
 - 1.13 Precisión y repetibilidad
- 2. Control Realimentado
 - 2.1 Procesos
 - 2.2 Componentes del Control
 - 2.3 Sensores y Transmisores
 - 2.4 Elementos finales de control
 - 2.5 Otros lazos de control
 - 2.6 Glosario

- Simbología de Instrumentación
 - 3.1 Símbolos y Números TAG o Identificación
 - 3.2 Símbolos de Líneas
 - 3.3 Símbolos de Válvulas y Actuadores
 - 3.4 Leyenda y lazo simple
 - 3.5 Glosario
- Diagramas de Instrumentación y Proceso
 - 4.1 Conceptos de control digital
 - 4.2 Símbolos e identificadores
 - 4.3 Interpretar Diagramas
- Diagramas de Lazo
 - 5.1 Secciones
 - 5.2 Símbolos y Referencias
 - 5.3 Lazos Electrónicos
 - 5.4 Lazos Neumáticos
 - 5.5 Glosario
- Modos de Control
 - 6.1 Control de dos posiciones
 - 6.2 Control Proporcional
 - 6.3 Control PID
 - 6.4 Glosario
- Sintonía de un Controlador
 - 7.1 Sintonía de un Controlador
 - 7.2 Sintonía automática
 - 7.3 Sintonía manual
 - 7.4 Sintonía basada en la experiencia
- Medición de Temperatura
 - 8.1 Introducción
 - 8.2 Medidores de temperatura por dilatación / expansión
 - 8.3 Medición de temperatura por Termopar
 - 8.4 Medición de temperatura por Termo resistencia
 - 8.5 Medición de temperatura por Radiación
- Medición de Nivel
 - 9.1 Introducción
 - 9.2 Metodos de medición de nivel de líquidos
 - 9.3 Medición de nivel discontinuo
 - 9.4 Medición de nivel de sólidos
- 10. Medición de Caudal
 - 10.1 General
 - 10.2 Notas de aplicación general
 - 10.3 Medición de sólidos.
 - 10.4 Tabla de comparación
 - 10.5 Diferencia de Presión Información general

 - 10.6 Caudalímetro de presión diferencial Placa orificio 10.7 Caudalímetro de presión diferencial Placa orificio segmental
 - 10.8 Caudalímetro de presión diferencial Placa orificio integral
 - 10.9 Caudalímetro de presión diferencial Tubo de Venturi 10.10 Caudalímetro de presión diferencial Tobera de Caudal

 - 10.11 Caudalímetro de presión diferencial Codo
 - 10.12 Caudalímetro de presión diferencial Tubo de Pitot
 - 10.13 Caudalímetros Magnéticos
 - 10.14 Medidores Másicos Efecto de Coriolis
 - 10.15 Medidores de Caudal Másico Térmico
 - 10.16 Caudalímetros a Turbina
 - 10.17 Caudalímetros de Desplazamiento Positivo
 - 10.18 Caudalímetros Vértice
 - 10.19 Caudalímetros de área variable Rotámetros 10.20 Caudalímetros Ultrasónicos
 - 10.21 Caudalímetros Ultrasónicos Doppler
 - 10.22 Vertedero y Canalón 10.23 Caudalimetros Target
- 11. Medición de Presión
 - 11.1 Conceptos
 - 11.2 Presión Atmosférica
 - 11.3 Presión Relativa
 - 11.4 Presión Absoluta
 - 11.5 Presión negativa o Vacío
 - 11.6 Diagrama comparativo de escalas
 - 11.7 Presión Diferencial

- 11.8 Presión Estática
- 11.9 Presión Dinámica o Cinética
- 11.10 Unidades de Presión
- 11.11 Dispositivos para medición de presión
 - 11.11.1 Tubo de Bourdon
 - 11.11.2 Membrana o Diafragma
 - 11.11.3 Fuelle
 - 11.11.4 Columna de líquido
 - 11.11.5 Tipo Capacitivo
 - 11.11.6 Tipo Strain Gauge
 - 11.11.7 Sensor de Silicio Resonante
 - 11.11.8 Tipo Piezoeléctrico

12. Válvulas de Control

- 12.1 General
- 12.2 Cierre de Válvula
- 12.3 Ruido en la válvula
- 12.4 Flasheo y cavitación
- 12.5 Caída de presión en válvula
- 12.6 Notas de instalación
- 12.7 EI Cv
- 12.8 Cuerpos de Válvulas
- 12.9 Reglas empíricas
- 12.10 Aletas de enfriamiento y Extensiones de Bonete
- 12.11 Sellos a Fuelle y Empaquetaduras
- 12.12 Tabla de comparación
- 12.13 Cuerpo de Válvula: Globo
- 12.14 Cuerpo de Válvula: Diafragma (Saunders)
- 12.15 Cuerpo de Válvula: Esférica
- 12.16 Cuerpo de Válvula: Mariposa
- 12.17 Cuerpo de Válvula: Tapón rotativo excéntrico
- 12.18 Actuadores
- 12.19 Dimensionamiento de válvulas de control

VI. ESTRATEGIAS METODOLOGICAS.

- Será aprovechado el método combinado de inducción deducción aplicando las tecnicas de:
- Exposición
- Resolución de problemas
- Discusión
- Experiencias prácticas de laboratorio

VII. MEDIOS AUXILIARES.

- Tiza
- Marcadores
- Pizarra
- Equipo multimedia
- Bibliografía de apoyo

VIII. EVALUACION.

Requisito para el examen final.

Dos pruebas parciales de cuyos puntajes saldrá el promedio que dará derecho a los exámenes finales. Examen final.

El examen final versará sobre la totalidad del contenido programático.

Calificación final.

La calificación final estará de acuerdo a la escala establecida por el Consejo Directivo de la Facultad.

Los exámenes parciales representarán el 60% del Promedio Ponderado

El trabajo práctico de final de curso, representará el 20% del Promedio Ponderado.

La clase taller a ser desarrollada, representará el 20% del Promedio Ponderado

IX. BIBLIOGRAFIA.

MATERIALES BIBLIOGRÁFICOS DISPONIBLES EN LA BIBLIOTECA DE LA FACULTAD POLITÉCNICA

- □ Bolton, W. (1999). *Instrumentación y control industrial.* (2° Ed.). Madrid: Paraninfo.
- ☐ CreusSole, A. (2011). Instrumentación industrial. (8° Ed.). México: Alfaomega.
- Doebelin, E. O. (2005). Sistemas de medición e instrumentación: diseño y aplicación. (5° Ed.). México: McGraw-Hill.
- Helfrick, A. D. & Cooper, W.D.(1991). Instrumentación electrónica moderna y técnicas de medición. México: Prentice Hall Hispanoamericana.
- □ PallásAreny, R. (2007). Sensores y acondicionadores de señal. (4° Ed.). Barcelona: Marcombo.
- Serna Ruiz, A., Ros García, F. & Rico Noguera, J. C. (2010). Guía práctica de sensores. Madrid: Creaciones Copyright.

RECURSOS DISPONIBLES A TRAVÉS DE CICCO

- ☐ Kim, Y., &Yarlagadda, P. (2013). Industrial Instrumentation and Control Systems II: Selected, Peer Reviewed Papers From the 2013 2nd International Conference on Measurement, Instrumentation and Automation (ICMIA 2013), April 23-24, 2013, Guilin, China. Durnten-Zurich, Switzerland: TransTechPublications. 1. Recursos disponibles a través de Colecciones MHE. Recuperado de: http://www.cicco.org.py/
- □ Schultz, A. M., & Gilbert, R. C. (2011). *Industrial Control Systems*. Hauppauge, N.Y.: Nova Science Publishers, Inc. Recuperado de: http://www.cicco.org.py/
- □ Shimada, A. (2016). Recent advances and outlook in industrial instrumentation and mechatronics control. *IEEJ TransactionsOnElectrical & Electronic Engineering*, *11*S100. doi:10.1002/tee.22341

RECURSOS DISPONIBLES A TRAVÉS DE COLECCIONES MHE

- □ Fernández, D. B. Y. E. R. (2013). *Análisis y diseño de sistemas de control digital*. México, D.F., MX: McGraw-Hill Interamericana. Recuperado de: http://ebookcentral.proquest.com
- □ Niebel, B. W., &Freivalds, A. (2009). *Ingeniería industrial: métodos, estándares y diseño del trabajo.* (12a. ed.). Distrito Federal, Select Country: McGraw-Hill Interamericana. Recuperado de: http://ebookcentral.proquest.com