UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD POLITÉCNICA LICENCIATURA EN CIENCIAS ATMOSFÉRICAS PLAN 2005 PROGRAMA DE ESTUDIOS

Resolución 25/06/11-00 Acta 1214/24/03/2025 ANEXO 01

l	IDENTIFICACIÓN		
1. 2. 3.	Asignatura Semestre Horas semanales	Optativa 4 – Meteorología Sinóptica II Séptimo 6 horas	
4.	3.1. Clases teóricas3.2. Clases prácticasTotal de horas cátedras4.1. Total de clases teóricas4.2. Total de clases prácticas	: 3 horas : 3 horas : 96 horas : 48 horas : 48 horas	

II. -**JUSTIFICACIÓN**

La Meteorología Sinóptica II representa un avance en el estudio de los sistemas atmosféricos de escala sinóptica y su interacción con fenómenos de mesoescala en Sudamérica. La comprensión detallada de estos procesos es fundamental para la predicción del tiempo y la toma de decisiones en sectores relevantes como la aviación, la gestión de riesgos, gestión ambiental y la planificación de actividades socioeconómicas. Esta asignatura profundiza en el análisis sinóptico avanzado, tormentas severas y otros fenómenos locales, integrando herramientas avanzadas como modelos numéricos y datos de reanálisis, productos satelitales y de radar meteorológico. Además, se introduce la evaluación del impacto de la variabilidad y cambio climático en la dinámica sinóptica, brindando un enfoque actualizado y relevante para el estudio del tiempo y el clima en la región.

III. -**OBJETIVOS**

- 3.1 Analizar los principales sistemas sinópticos y su influencia en la evolución del tiempo en Sudamérica, incorporando el concepto de climatología sinóptica y la identificación de condiciones normales y anómalas de los fenómenos meteorológicos.
- 3.2 Comprender los procesos físicos y dinámicos asociados a la convección, tormentas severas y sistemas convectivos de mesoescala, aplicando herramientas de modelización y teledetección para su monitoreo y predicción.
- 3.3 Evaluar la interacción de fenómenos meteorológicos locales y regionales, como nieblas, brisas y vientos característicos, en la dinámica atmosférica y su impacto en sectores estratégicos como la aviación y la gestión del riesgo.
- 3.4 Aplicar metodologías avanzadas de diagnóstico sinóptico mediante el uso de modelos numéricos, reanálisis meteorológicos, imágenes satelitales y radar meteorológico para la vigilancia y predicción del tiempo.
- 3.5 Integrar técnicas modernas de pronóstico operacional, incluyendo herramientas computacionales y análisis de cambio climático, para mejorar la precisión en la predicción de eventos meteorológicos extremos en Sudamérica.

IV. -PRE-REQUISITOS

- Meteorología Sinóptica I
- 4.2 Sensores Remotos

V. -CONTENIDO

5.1 Unidades programáticas

- 5.1.1 Masas de aire y análisis sinóptico avanzado sobre América del Sur.
- Sistemas convectivos y fenómenos meteorológicos severos. 5.1.2
- Fenómenos meteorológicos locales y regionales. 5.1.3
- Herramientas avanzadas de diagnóstico sinóptico. 5.1.4
- Pronóstico meteorológico operacional general y para la aviación. 5.1.5

5.2 Desarrollo de las unidades programáticas

Masas de aire y análisis sinóptico avanzado sobre América del Sur Anexo 01 Acta 1214/24/03/2025 Programas de Estudios de Licenciatura en Ciencias Atmosféricas

Página 1 de 3

- 5.2.1.1 Tipos de masas aire predominantes en América del Sur y los océanos adyacentes.
- 5.2.1.2 Concepto de climatología sinóptica: definición, metodologías y aplicaciones en el análisis del tiempo y el clima.
- 5.2.1.3 Condiciones normales y anómalas de fenómenos meteorológicos en América del Sur: identificación, análisis de patrones y factores moduladores. Estudios de caso con datos de reanálisis
- 5.2.1.4 El monzón de América del Sur. Zona de Convergencia Intertropical. Zona de Convergencia del Atlántico Sur.
- 5.2.1.5 Patrones sinópticos recurrentes en la región y su relación con eventos extremos.
- 5.2.1.6 Uso de modelos numéricos de predicción del tiempo en el análisis sinóptico: ventajas y limitaciones en la meteorología operacional.

5.2.2 Sistemas convectivos y fenómenos meteorológicos severos

- 5.2.2.1 Procesos termodinámicos y dinámicos en la convección profunda.
- 5.2.2.2 Organización y evolución de tormentas severas en Sudamérica.
- 5.2.2.3 Sistemas Convectivos de Mesoescala. Casos de estudio.
- 5.2.2.4 Predicción de tornados y eventos de granizo: metodologías y casos de estudio.

5.2.3 Fenómenos meteorológicos locales y regionales

- 5.2.3.1 Formación y evolución de nieblas radiactivas, por advección y orográficas.
- 5.2.3.2 Sistemas de brisas costeras y continentales: impacto en la previsión meteorológica.
- 5.2.3.3 Viento zonda y otros vientos regionales: causas, impactos y predicción.
- 5.2.3.4 Circulación de baja frecuencia en Sudamérica y su influencia en eventos meteorológicos.

5.2.4 Herramientas avanzadas de diagnóstico sinóptico

- 5.2.4.1 Interpretación de reanálisis meteorológicos y datos de observación.
- 5.2.4.2 Uso de radar meteorológico en el monitoreo y análisis de sistemas convectivos.
- 5.2.4.3 Integración de productos satelitales para la vigilancia meteorológica operacional.
- 5.2.4.4 Utilización de herramientas computacionales para el análisis de datos en formato grillado: GrADS, Python, R, entre otros.

5.2.5 Predicción y pronóstico meteorológico operacional general y para la aviación

- 5.2.5.1 Técnicas modernas de pronóstico a corto y mediano plazo.
- 5.2.5.2 Modelos de predicción numérica: interpretación y aplicación en Sudamérica.
- 5.2.5.3 Elaboración de pronósticos para la aviación y otros sectores estratégicos.
- 5.2.5.4 Evaluación del impacto del cambio climático en la dinámica sinóptica y su relación con eventos extremos.

VI. - ESTRATEGIAS METODOLÓGICAS

- 6.1 Exposición dialogada
- 6.2 Resolución de problemas aplicando la teoría estudiada
- 6.3 Técnicas grupales para resolver problemas en horas de práctica
- 6.4 Elaboración de trabajos prácticos
- 6.5 Entrenamiento para resolver problemas utilizando varias bibliografías

VII. - MEDIOS AUXILIARES

- 7.1 Pizarra
- 7.2 Marcadores.
- 7.3 Borrador de pizarra
- 7.4 Notebook y equipos multimedia
- 7.5 Material bibliográfico

VIII. - EVALUACIÓN

La evaluación se realizará de acuerdo con las reglamentaciones vigentes de la Facultad Politécnica – UNA.

IX. - BIBLIOGRAFÍA

- NOAA/NWS. (2021). National Weather Service Forecast Models: GFS, NAM, and HRRR.
- □ ECMWF. (2020). IFS Documentation Cy46r1: Description of the ECMWF Integrated Forecasting System.
- World Meteorological Organization. (2018). Guide to Meteorological Instruments and Methods of Observation (WMO-No.

Anexo 01 Acta 1214/24/03/2025 Programas de Estudios de Licenciatura en Ciencias Atmosféricas

Págin

Página 2 de 3

	Oniversidad Nacional de Asunción - Facultad Politecnica
8).	
	World Meteorological Organization. (2017). Guidelines on Ensemble Prediction Systems and Forecasting. Disponible en 1091 Guidelines on EPS en
	Stull, R. (2017). Practical Meteorology: An Algebra-based Survey of Atmospheric Science. University of British Columbia.
	Marengo, J. A., Espinoza, J. C., Anunciação, Y. M. T., Ronchail, J., & Alves, L. M. (2017). Extremes and climate change Evolution of extreme weather and climate events in South America. <i>Climate Research</i> , 74(3), 221-240.
	Houze, R. A. (2014). Cloud Dynamics (2nd ed.). Academic Press.
	Holton, J. R., & Hakim, G. J. (2012). An Introduction to Dynamic Meteorology (5th ed.). Academic Press.
	Lackmann, G. M. (2011). <i>Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting</i> . American Meteorological Society.
	Vera, C., Higgins, W., Amador, J., Arias, P. A., Ambrizzi, T., Garreaud, R., Gochis, D., Gutzler, D., Lettenmaier, D. Marengo, J. A., Mechoso, C. R., Nogues-Paegle, J., Silva Dias, P. L., & Zhang, C. (2010). Extreme precipitation events over South America: A review. <i>Journal of Hydrology</i> , 391(1-2), 122-138.
	Wallace, J. M., & Hobbs, P. V. (2006). Atmospheric Science: An Introductory Survey (2nd ed.). Academic Press.
	Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J. Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A. Reynolds, R., Jenne, R., & Joseph, D. (1996). The NCEP/NCAR 40-Year Reanalysis Project. <i>Bulletin of the American Meteorological Society</i> , 77(3), 437-472. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
	Kidder, S. Q., & Vonder Haar, T. H. (1995). Satellite Meteorology: An Introduction. Academic Press.

Bluestein, H. B. (1992). Synoptic-Dynamic Meteorology in Midlatitudes, Volume I & II. Oxford University Press.

d