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Abstract

This study examines the rapid growth of energy demand in Paraguay, primarily driven
by intensive air conditioning use and reduced hydroelectric output due to adverse Paraná
River conditions. Employing a Vector Autoregressive (VAR) model, we quantify how
temperature shocks significantly elevate peak electricity demand within the National
Interconnected System. Our findings reveal that air conditioning accounts for 34–36% of the
peak demand, pushing the hydroelectric system towards its operational limits. To address
this challenge, we propose a technological transition strategy focused on energy efficiency
improvements and labeling programs aimed at reducing peak demand, delaying system
saturation, and achieving substantial power savings. These measures offer a practical
approach to climate adaptation while supporting Paraguay’s international commitments
and Sustainable Development Goals (SGDs) 7 (affordable and clean energy) and 13 (climate
action). This work represents the first pioneering effort in Paraguay to quantify the influence
of the SIN’s AC at the national level. This research provides policymakers with an evidence-
based framework for energy planning, marking a pioneering effort in Paraguay to quantify
cooling loads and set actionable efficiency targets.

Keywords: energy demand; air conditioning; peak demand; VAR; energy efficiency; SDGs

1. Introduction
Electricity has become one of the most indispensable resources for maintaining daily

quality of life and the economic development of countries. Its availability and accessibility
are critical factors directly impacting the quality of life of society [1] and socioeconomic
growth [2]. However, various studies indicate that high temperatures and other climatic
phenomena can significantly alter energy demand, influencing consumption patterns for
cooling, heating, and other services [3,4].

In Paraguay, the hydroelectric supply faces growing uncertainty due to unfavorable
climatic and hydrological conditions, while demand rises sharply due to the intensive use
of air conditioning (AC). Research by [5] suggests that climate change could worsen water
resource availability, potentially jeopardizing energy generation. This underscores the
need to reduce household AC consumption [6]. Therefore, implementing energy efficiency
(EE) standards is crucial [7], considering that certain efficiency improvements can lead to
unintended increases in overall consumption [8,9].
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Additionally, building features (insulation, windows, walls, infiltration, etc.) have been
shown to play a significant role in the thermal load of buildings, affecting AC use [10,11].
The quality of insulation can considerably reduce heat gains or losses, impacting the overall
efficiency of cooling equipment and energy demand during temperature peaks.

Another important aspect is the relationship between temperature, humidity, and
thermal comfort, represented by comfort curves. These curves describe the conditions under
which users find a space comfortable, directly influencing the use of cooling equipment [12].
In hot and humid climates like Paraguay’s, these factors drive greater dependence on AC,
intensifying energy demand during heat and humidity peaks [13–15].

In this context, the research and development of more efficient technologies [6] and the
establishment of standards and labels for AC [16] emerge as central strategies to reduce peak
demand and ensure energy supply sustainability. Quantifying the total number of installed
AC units and their contribution to peak load is essential [17,18]. In Paraguay, record
temperatures have been registered in recent years—reaching 44 ◦C in 2019—exacerbated
by deforestation and climate change [19]. This poses significant challenges to the resilience
of the national electrical system and long-term planning.

The primary objective of this study is to comprehensively analyze the influence of
temperature on the maximum demand of Paraguay’s National Interconnected System (SIN)
and propose energy efficiency measures to mitigate its impact. Specifically, it seeks to
empirically confirm the relationship between temperature and maximum demand, quantify
the contribution of AC to peak load, and evaluate the impact of technological transition,
energy labeling, and envelope characteristics as mitigation solutions.

This study aims to contribute to achieving Sustainable Development Goals 7 and 13 by
promoting EE and climate change adaptation. The findings could provide valuable infor-
mation to policymakers and energy sector professionals for prioritizing actions, improving
building envelopes, expanding the grid, and incorporating clean technologies, fostering
sustainable energy development for Paraguay and the region.

This study does not explicitly model the impact of the building envelope on cooling
loads (Figure 1). While envelope features have a substantial impact on thermal loads
and AC usage, this investigation lacked systematic data or national benchmarks for local
envelope thermal performance. As a result, metrics including U-values, absorptance, and
infiltration were excluded. A separate, future study will rigorously quantify the impact of
building envelopes on cooling demand, providing a more comprehensive assessment.

 

Figure 1. Factors and policies to reduce peak demand in the SIN: climate, envelope and A.C. efficiency.

Because data are scarce, this study first quantifies the direct impact of temperature
on demand, deliberately isolating this bivariate relationship from other influences. We ac-
knowledge other major determinants of long-term demand—such as electricity prices, GDP,
and income—and note that integrating these with the core climate-demand relationship is
a crucial next step for future research.
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2. Literature Review
Environmental degradation and the scarcity of adequate energy supply constitute

two of the greatest global challenges requiring immediate attention [20]. In the residential
sector, the relationship between temperature and electricity demand has been the subject
of numerous studies [21–25]. While most of these studies demonstrate that temperature
significantly influences consumption or demand, few delve into the specific association
of consumption with cooling (especially air conditioning) or propose specific mitigation
solutions rooted in energy efficiency policies.

At the international level, Holtedahl and Joutz (2004) [24] analyzed residential elec-
tricity demand in Taiwan using an error correction model incorporating degree-days and
separating short- and long-term effects. Similarly, Gam and Rejeb (2012) [22] employed
econometric methods in Tunisia to relate demand growth to factors such as income, elec-
tricity prices, and climate. Auffhammer and Mansur (2014) [21] reviewed how climatic
impacts on energy consumption are measured, emphasizing that AC in warm climates
significantly increases peak demand.

In regions with hot summers, studies such as [23] (in Delhi and India) and [25] (in
Shanghai) used VAR models and impulse-response analyses to confirm the sensitivity of
electricity demand to temperature increases. However, while they robustly quantify the
statistical effects, they do not isolate the fraction of demand attributable to AC or propose
public policy scenarios to mitigate these peaks.

Works such as those by [6,9], focus on the role of AC efficiency in residential demand
in China. While they confirm that efficiency improvements in AC units may not reduce
total consumption (due to potential rebound effects or increased usage frequency), they do
not accurately explain the portion of maximum demand attributable to cooling.

In Latin America, Casarin and Delfino (2011) [26] studied how AC adoption increases
residential demand in Buenos Aires, Argentina, focusing their analysis on price dynamics
and tariff freezes without offering a comprehensive energy efficiency policy solution.

Regarding EE in air conditioning, various authors have examined minimum efficiency
standards and their potential to reduce demand and emissions [6,27,28]. However, most
focus on estimating global benefits (emission reductions, economic savings) or discussing
the rebound effect, without designing a detailed technological transition model to calculate
peak demand savings.

Additionally, building envelopes are considered a key factor in reducing the cooling
load associated with AC. Better insulation, high-performance windows, and controlled
infiltration can significantly decrease heat gains inside buildings, reducing the need for
intensive AC use [10,11]. These envelope improvements can complement energy labeling
policies and efficiency standards by reducing the total cooling load faced by equipment.

Comfort curves, which relate temperature, humidity, and human perception, are also
crucial tools for understanding the conditions under which AC usage increases. De Dear
and Brager (2002) [12] highlighted that, in hot and humid climates, any deviation from these
curves leads to a significant increase in dependence on cooling equipment. Refs. [29,30]
suggested that controlling relative humidity could optimize energy use by reducing cooling
loads in such regions.

In Paraguay, previous studies have highlighted the increase in AC usage and the
need to implement EE [31–33]. However, these works focus more on describing effi-
ciency potential or proposing energy labeling [34,35] without integrating into a single
analytical framework:

The demonstration, through inferential analysis (econometrics), of the relationship
between temperature and maximum demand.

The quantification of the fraction is attributable to AC.
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The evaluation of an energy efficiency (or technological change) scenario with the
resulting savings on peak load, as well as consideration of envelope characteristics to
further reduce cooling-related demand.

Thus, the reviewed literature confirms a lack of in-depth studies that address in a
comprehensive and disaggregated manner the sequence: temperature → demand → AC
→ EE measures → impact on peak load. The effect of the use of refrigeration or heat pump
equipment on peak demand and load is discussed in several papers [36–38].

Within the literature on the rebound effect, refs. [39,40] explored how efficiency im-
provements in household energy use can lead to varying magnitudes of the rebound effect
depending on household income levels in Paraguay. Their conclusions emphasize the
need to implement targeted efficiency policies, recognizing that not all population sectors
behave similarly after adopting more efficient technologies. While this study primarily
focuses on direct rebound in Paraguay, it aligns with the idea that controls, labeling, and
efficiency regulations may be insufficient if socioeconomic and behavioral factors are not
simultaneously considered [6,41].

Additionally, building envelopes is crucial to enhance the effectiveness of these policies
and prevent potential savings from being offset by increased AC use.

This study takes a step further by not only demonstrating the influence of temperature
on demand or limiting itself to discussing the potential rebound effect but also by quan-
tifying the contribution of cooling to maximum demand and proposing a technological
transition to mitigate peak loads and the imbalance between supply and demand.

While this work mentions the importance of building envelopes and thermal comfort
conditions as relevant factors, it does not include them in the calculations performed.
However, it highlights their potential as key components to be considered in future studies
aiming to comprehensively address the impact of these elements on cooling loads and
energy efficiency. International evidence confirms that temperature affects electricity de-
mand and, with warmer summers, increases peak cooling. Recent studies integrate climate
with supply and demand and show that warming and water scarcity simultaneously stress
both sides of the electricity system, reinforcing the urgency of efficiency and adaptation
measures [42].

In addition to VAR, previous studies have used error correction models (ECM) to
capture long-term relationships between temperature and energy demand [43,44], and
panel data regressions to control for spatial and temporal heterogeneity [45–47]. VAR
was selected for its ability to model dynamic feedback between temperature and demand
without imposing strict exogeneity restrictions, allowing endogenous interactions and
persistent feedbacks between variables to be captured [43,48].

3. Methodology
This study adopts a quantitative, exploratory, and descriptive approach to evaluate

the influence of temperature on the demand of the National Interconnected System (SIN)
and propose energy efficiency measures. The employed methods are described below.

The VAR model was selected for its ability to capture dynamic interdependencies
among multiple time series without imposing strict exogeneity assumptions, enabling
analysis of the mutual influence between temperature and electricity demand [22,49]. It
should be noted that the model used monthly data due to limited access to hourly SIN
data during the study period. While hourly data would be ideal for peak load studies,
the monthly approach provides a valid baseline for medium-term energy planning. Fur-
thermore, the model intentionally focused on the direct physical relationship between
temperature and demand, isolating the climatic effect from other socioeconomic factors to
specifically quantify the system’s thermal sensitivity.
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3.1. VAR Econometric Model

To determine the influence of temperature on demand, a Vector Autoregressive (VAR)
econometric model was applied [22,50], enabling both correlational and explanatory analy-
ses. Its general specification is:

Yt = ∑n Xt−n + ∑n Yt−n + ε1t

Xt = ∑n Xt−n + ∑n Yt−n + ε2t
(1)

where

• Yt represents the monthly average demand of the SIN at time t.
• Xt is the monthly average temperature at time t.
• Xt−n and Yt−n correspond to the lags of demand and temperature, respectively.
• ε1t and ε2t are the error terms of each equation.

The VAR model was validated using residual normality tests [51], homoscedasticity
tests [52], and no-autocorrelation tests [53]. Subsequently, an Impulse-Response Function
was employed to examine the reaction of each variable to shocks or disturbances in the
other. This allowed for evaluating the present and future effects of unexpected changes in
temperature [54] on SIN demand.

3.2. Air Conditioning Classification

The classification of AC units installed nationwide was conducted by combining
data from the National Statistics Institute (INE) and import records (Customs, CLERK
consultancy). This process involved (The spreadsheets can be viewed at the following
link: Memory of Developed Calculation Analisis Project (accessed on: https://github.com/
dsalomon1996/my-first-project, accessed on 25 November 2025)):

Two key steps:

1. Obtaining the gross total of installed AC units (2019, 2020, 2021), without disaggregat-
ing efficiency or cooling capacity.

2. Categorizing AC imports in 2019 based on:

• Energy Efficiency Index (EEI): Used to classify units into efficiency classes (A, B,
or C).

• Cooling capacity (BTU/h): Indicates the unit’s cooling performance.

The power consumption (P consumption

)
of each AC unit was estimated using the

formula:

Pconsumption =
Ccooling

(
BTU

h

)
× k kW

( BTU
h )

EEI
(2)

where

• Ccooling

(
BTU

h

)
: Cooling capacity in BTU/h.

• k: Conversion factor from BTU/h to kW.
• EEI: Energy Efficiency Index.

The percentage distribution from 2019 (based on EEI and BTU/h) was extrapolated to
the total installed AC units for 2020 and 2021, allowing the estimation of aggregate energy
consumption (or cooling load).

This methodology provides a robust engineering approach for estimating the potential
connected load. While it does not capture operational factors such as duty cycle or use
diversity—which would require direct field measurements currently unavailable at the
national scale—the results represent the most reliable estimate possible with existing
official data.
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3.3. Projections of Maximum Demand and Installed AC Units

To project SIN maximum demand and the number of AC units over a 12–13-year
horizon, two methods were applied:

1. Logistic Model

• Models the logistic growth of maximum demand and population (residents and AC
units), assuming growth rates decrease as a maximum value approached [55].

• Includes a correlation analysis between total population and the number of installed
AC units to estimate their upper limit.

• Assumes the growth rate declines as it approaches the population cap.

The model is expressed as:

DemandSIN(t) =
K

1 + e−r(t−t0)
(3)

where K maximum demand value; r growth rate, and t0 Inflection point.

2. Monte Carlo Method

• A Geometric Brownian Motion model with drift was applied, considering demand as
a stochastic process with random fluctuations (“shock” scenarios) [56].

• Historical data on maximum demand and installed AC units were used to simulate
evolution over 12–13 years.

• After 1000 simulations, the probable demand distribution was obtained, identifying
average or extreme scenarios.

3.4. Structuring Energy Efficiency Scenarios

Based on the classification of AC units and the projections obtained, various EE
scenarios were structured to evaluate their impact on demand. A baseline distribution
(without improvements) was defined, and several measures were proposed based on a
Technological Transition Rate (TTR):

• Measure 1 (TTR = 20%): Transition 20% of the least efficient units to higher
efficiency classes.

• Measure 2 (TTR = 100%): Transition 100% of one lower efficiency class to a higher one.
• Measure 3 (Complete Transition to Class A): Convert all units to the highest

efficiency class.

TTR represents the proportion of AC units transitioning from lower to higher efficiency
classes. These measures were compared against a BAU (Business-As-Usual) scenario to
estimate power savings (MW) and determine the potential reduction in SIN peak demand.

The choice of the three TTR scenarios is not arbitrary but grounded in a combination
of (i) observed growth of the AC fleet in Paraguay, (ii) sensitivity analysis of the transition
paths, and (iii) alignment with the progressive implementation of national EE regulations.
Historically, INE data show annual increases of 9–14% in the stock of AC units during
2019–2021, which, combined with typical replacement rates reported in the international
literature for efficiency programs, makes a 20% TTR a realistic “moderate acceleration”
relative to recent trends rather than an extreme policy shock [6,18,27]. Higher TTRs were
explored through a 2–100% sensitivity matrix (Section 4.6), and the 100% scenario for one
lower class was defined as a stylized upper bound consistent with accelerated phase-out of
the worst-performing equipment under stringent minimum energy performance standards
(MEPS) [16,20,28]. Finally, the “full transition to Class A” scenario was constructed as a
technical potential benchmark, representing the maximum savings compatible with the
current label structure and serving as a long-term policy target like scenario design in
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other energy system studies [42]. In all cases, the scenarios are technology-based and
do not explicitly simulate specific instruments (e.g., subsidies vs. mandatory standards);
instead, they represent plausible envelopes of outcomes under different combinations of the
recently established National Energy Efficiency Labelling Program and the phased MEPS
framework introduced by Presidential Decree 2853 for AC and other end-uses [33,35]. A
more detailed modelling of policy instruments, costs, and behavioral responses is left for
future work, but the present approach ensures that the selected TTR values lie within ranges
that are both technically feasible and consistent with Paraguayan regulatory trajectories
and international experience.

For this case study, the rebound effect was not considered in the analysis of the
econometric model, because the aim was to quantify energy savings, not to study the
rebound effect. It is worth mentioning that the rebound effect of energy efficiency should
be considered [40].

4. Results and Discussion
This study conducted a comprehensive diagnosis of SIN electricity demand, focusing

on demand growth, recorded maximum temperatures, and the evolution of installed AC
units. Below, the main findings are described, and the results are discussed in terms of
energy efficiency (EE) and future planning.

4.1. Status of SIN Maximum Demands

SIN’s maximum demand has experienced significant growth in recent years (Figure 2).
Between 2019 and 2020, a 0.3% increase was observed. From 2020 to 2021, the increase
was 6%, aligning with the estimates in the Transmission Master Plan 2021–2030, National
Electricity Administration (ANDE). Subsequently, between 2021 and 2022, demand grew
by 11.4%, reaching a record peak of 4206 MW—429 MW more than the previous year.

Figure 2. Monthly Maximum Demand Curves of SIN (2010–2022).

When comparing this peak demand with SIN’s maximum dispatchable capacity, the
availability could be reduced to 54%, raising concerns about future supply capacity. This
risk is heightened by high temperatures (officially recorded on 4 February 2022), which
drive intensive AC use.

Figure 2 also highlights how the overlap of demand curves from 2010 to 2015 contrast
sharply with the strong growth observed from 2019 to 2022. Key contributing factors
include industrial and commercial expansion, changes in energy use habits, and increasing

https://doi.org/10.3390/en19020482
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reliance on household electric devices, especially AC. Extreme climatic conditions, such as
heat waves or adverse weather events, further accelerate peak demand.

4.2. Status of Installed AC Units Nationwide

The number of installed AC units in Paraguay shows a clear upward trend, as seen
in Figure 3. Between 2002 and 2021, the number of units increased 8.3-fold, leading to a
3.2-fold growth in electricity consumption over the same period. The annual growth rate of
AC units (based on INE data) ranged from 9% to 14% during the 2019–2021 period.

Figure 3. Household Appliance Ownership and Residential Energy Consumption (Percent;
2002 = 100).

This progressive increase largely explains SIN’s peak demand during periods of high
temperatures. As the number of installed AC units grows, maximum demand becomes
more strained, underscoring the importance of implementing EE measures.

4.3. Influence of Temperature on SIN Demand

To quantitatively assess the influence of temperature, the monthly average of the SIN
demand during 2019–2021, a VAR model was applied, and the Impulse-Response Function
was analyzed (Figure 4). Demand and temperature data—sourced from ANDE and NASA’s
Power Data Access Viewer—were structured into 36 observations. After validating the
model, it was concluded that approximately 20% of the variance in monthly demand can
be explained by temperature “shocks” [54].

These reactions are significant in the short term; however, the effect tends to dissipate
after the second analyzed period, suggesting that sudden temperature changes elicit con-
temporaneous demand responses without long-term persistence. This finding aligns with
ANDE’s official statement on the direct relationship between temperature increases and
energy consumption [57].

https://doi.org/10.3390/en19020482
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Figure 4. Impulse-Response Function of Monthly Average Demand to Monthly Average Temperature
Shocks. The reaction is only significant in the first period (1).

4.4. Contribution of AC Demand to SIN’s Maximum Demand (2019–2021)

Using the power consumption data of AC units (classified by efficiency and load
types), their contribution to SIN’s maximum demand was determined (Figure 5). In 2019,
AC demand accounted for 34% of maximum demand, equivalent to 923 MW. In 2020, this
proportion rose to 36% (976 MW), and in 2021 it remained at 36% (1044 MW).

 

Figure 5. Contribution by Efficiency Class in MW of Installed AC Units to SIN Maximum Power
Demand, 2019–2021.

These estimates are based on verified official statistics and differ from values reported
by other sources such as [35]. However, the presented approach leverages data validated
by Customs and INE, providing a solid approximation of the cooling load impacting SIN.

It is essential to note that the estimate of a 34–36% contribution of AA to peak demand
should be interpreted as a robust approximation, given the limitations of existing data.
While more detailed methodologies incorporating hourly data, direct field measurements,
or more advanced climate metrics could refine this estimate, the results presented constitute

https://doi.org/10.3390/en19020482
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the first comprehensive nationwide quantification and establish a fundamental baseline for
future research and public policy.

4.5. Effects of EE Measures on Installed AC Demand Nationwide
4.5.1. Projections of SIN Maximum Demand and Installed AC Units

To estimate the evolution of the maximum demand of the National Interconnected
System (SIN) and AC penetration in the medium and long term, two methodologies were
applied: the Logistic Model and the Monte Carlo Method. Both approaches were compared
with historical data from the ANDE and the scenarios presented in its Transmission Master
Plan to determine which best aligns with actual behavior and which serves as a “stress
scenario” for planning.

Projections Using Logistic Model—Initial Assumption: Population and AC Growth

It is hypothesized that the growth of AC units is correlated with population in-
crease [55]. To verify this, the correlation index between the number of AC units and
the population (INE/STP-DGEEC) was calculated. The result obtained was 96%, indicating
a direct relationship between AC ownership and the number of inhabitants in the country.

Table 1 (Comparison of Population Projection Values by STP vs. Logistic Model) shows
how the model reasonably reproduces official population projection data.

Table 1. Comparison of Population Projection Values by STP vs. Logistic Model Results.

Year STP/DGEEC Values
(Millions of Inhab.)

Logistical Model
(Millions of Inhab.)

2023 7.54 7.54
2024 7.65 7.64
2025 7.75 7.73

AC Participation Rate in the Population

For 2019, 2020, and 2021, the average AC participation rate in the population was
determined, as shown in Table 2 (Calculation of the Average Participation Rate of Installed
AC Units Nationwide in the Total Population). The results indicate rates of 12.90%, 13.45%,
and 14.19%, averaging 13.52%.

Table 2. Growth of AC units, population, and SIN maximum demand: comparison of official data
(INE, ANDE) and logistic model results (2019–2021).

Year National
Population

Official AC
Units (INE)

Model AC Units
(Logistic)
(Millions)

AC
Participation

Rate (%)

Official SIN Max
Demand (ANDE)

(MW)

Modeled SIN
Max Demand

(MW)

2023 7,152,703 922,735 0.88 7.54 3519 3266
2024 7,252,672 975,605 0.96 7.65 3563 3709
2025 7,353,038 1,043,688 1.03 7.75 3777 3934

Average 13.51%
Population source: Instituto Nacional de Estadística (INE), projections rounded to the nearest thousand.

Using this average value, it was multiplied by the maximum expected population
value, yielding K ∼= 1.844.849 AC units as the upper limit (e.g., period 2030–2033). Table 2
shows that the model reasonably reproduces the INE’s data on the number of AC units
installed nationwide.

https://doi.org/10.3390/en19020482
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Formation of the Logistic Model for AC Units and SIN

Using the above information, the Logistic Model for the number of AC units (Table 2)
and the projection of maximum demand (considering the maximum dispatchable capacity:
7831 MW) were structured.

In Table 2, the correlation between ANDE’s official values (2019–2021) and the model
results is evident. While the model tends to be conservative (converging to an asymptote),
it reasonably reproduces the real trend:

• 2019: 3519 MW (ANDE) vs. 3266 MW (Logistic).
• 2020: 3563 MW (ANDE) vs. 3709 MW (Logistic).
• 2021: 3777 MW (ANDE) vs. 3934 MW (Logistic).

The Logistic Model moderately describes the increase in maximum demand, consid-
ering the strong correlation with population growth and AC ownership. It is suitable for
controlled growth scenarios but may underestimate situations of rapid dynamics (e.g.,
peaks of massive AC adoption).

Projection Using Monte Carlo Method

To contrast with the Logistic Model, a Geometric Brownian Motion model with drift
was applied [56], generating 1000 simulations of maximum demand (based on historical
ANDE data) using normal random distributions (Gaussian). As shown in Figure 6, the
disparity in trajectories reflects different “shock” scenarios, and Figure 7 illustrates that
maximum demand could reach 9745 MW by 2033, exceeding the capacity of 7831 MW.

Figure 6. Projections of SIN Maximum Demand (2022–2023).

It is essential to note that the projections presented in Figures 6 and 7 do not explic-
itly incorporate a progressive increase in ambient temperature due to global warming.
The models assume steady-state climatic conditions based on historical data. However,
the Monte Carlo method indirectly captures part of this uncertainty through stochastic
perturbations, which can be interpreted as including extreme heat events. A scenario
of progressive global warming would represent a crucial area for future research, which
would likely show even higher peak demands than those projected here, reinforcing the
urgency of the proposed energy efficiency measures.

https://doi.org/10.3390/en19020482
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Figure 7. Mean of Projected Values for SIN Maximum Demand (2022–2035)—Monte Carlo Method.

This outlook is more “optimistic” than the Logistic Model, highlighting the possibility
of accelerated demand growth, linked—among other factors—to increased AC usage.

Simultaneously, the projection of the number of AC units (Figure 8) suggests that it
could reach approximately 3.4 million by 2033, if the 9% growth rate observed by INE
during 2019–2021 is maintained.

Figure 8. Mean of Projected Values for SIN Maximum Demand (2022–2033).

Comparison with Recorded Values and ANDE Scenarios

In Figure 9, Monte Carlo and Logistic Model projections are compared with actual
values and ANDE scenarios (Medium Scenario, Low Scenario). For 2022, the Monte Carlo
projection (4147 MW) and Logistic Model (4158 MW) align more closely with the recorded
value (4206 MW) than ANDE’s estimates (Medium–High Scenarios), lending credibility to
these methods for planning purposes.

While the Logistic Model moderate’s growth (converging to an asymptote), the Monte
Carlo Method tends to follow the potential upward trajectory that demand could take
in subsequent years, reflecting stress scenarios for the electric system (e.g., heat waves,
accelerated increases in the AC fleet).

In planning, it is often recommended to use methods that “stress” the system so that
expansion strategies and efficiency policies are designed with a safety margin.

https://doi.org/10.3390/en19020482
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Figure 9. Projected vs. Recorded Maximum Demand Curves (2020–2024).

4.5.2. Potential Savings from the Application of EE Measures to AC Units
Installed Nationwide

Based on the results from Sections 4.5.1 and 4.5.2, the impact of three EE measures was
evaluated, grounded on TTR—percentages of units migrating from less efficient classes to
higher efficiency classes—and compared with a BAU scenario (without EE improvements).
As illustrated in Figures 10 and 11, these measures result in different power savings (MW)
throughout the 2022–2033 period:

• Measure 1 (TTR = 20%): Up to ~39 MW savings by 2030.
• Measure 2 (TTR = 100%): ~194 MW savings, equivalent to the capacity of the Acaray

Hydroelectric Plant (CH Acaray).
• Measure 3 (Full Transition to Class A): ~307 MW maximum savings by 2030, equivalent

to the installed capacity of two generating units of the Yacyreta Hydroelectric Plant
(CH Yacyreta).

 

Figure 10. Results of Applied Measures and Comparison with the BAU Scenario (Savings),
2022–2033 Period.
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Figure 11. Potential Savings Resulting from the Application of Different Technological Transition
Rates (2022–2039).

In contrast, the BAU scenario projects that AC units would account for 46% of maxi-
mum demand (4476 MW) by 2033, nearly half of the total peak demand, which is unsus-
tainable without EE policies. Some estimates from consultancies like CLERK differ in the
short term (e.g., 13 MW savings in 2022 for TTR = 20%), but the methodology presented
here is based on official INE/customs data from 2019 to 2021, offering a more “realistic”
approach for the medium to long term.

4.6. Technical Proposal for Viable Improvement

Based on the above, it is recommended to aim for a TTR of 16% from 2022 to 2030,
which would involve the progressive replacement of less efficient AC units with Class
A units (Figure 12). This strategy could achieve a potential savings of 166 MW by 2030,
contributing to the fulfillment of Sustainable Development Goals (SDGs) 7 (Affordable and
Clean Energy) and 13 (Climate Action). Furthermore, this approach would allow:

• Mitigating SIN saturation in extreme heat and drought scenarios.
• Reducing emissions associated with energy generation during peak demand periods.
• Strengthening system resilience against climatic variations and adverse hydrological events.

In summary, the combination of projection models and EE scenarios suggests that
without the implementation of labeling policies, equipment replacement, and regulation of
inefficient AC supply, Paraguay could face a rapid depletion of its dispatchable capacity
and higher costs for expanding electrical infrastructure.
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Figure 12. Potential Savings Curve for Each Year with a TTR of 16%.

This is a sensitivity analysis that crosses annual TTR/TDT (rows, 2–100%) with year
(columns, 2022–2038). Each cell indicates the percentage of inefficient stock that remains to
be migrated (or, equivalently, the savings gap that remains to be captured relative to the
“all Class A” scenario). Red = high gap; green = 0% (there is no more stock to be migrated;
the maximum savings have been captured). The 2022 base is based on the observed
label distribution (CLERK/INE) and the model’s stock/demand projections (Logistics/
Monte Carlo).

How to read it and the “16–18% range”

• With low TTRs (e.g., 2–8%), the gap decreases very little: in 2038, >20% remains to
be migrated.

• With high TTRs (≥40–50%), the gap reaches 0% a few years later (green).
• The 16–18% range is the “practical optimum”: by 2030, it leaves a remainder of

≈10–12%, i.e., ≈88–90% of the potential savings captured without incurring the
costs/doubtful viability of much higher TTR. This is consistent with the TTR = 16%
recommendation and the estimated savings of ~166 MW by 2030.

The TTR is the annual proportion of the fleet that migrates from less efficient to more
efficient classes; the savings in MW are calculated by comparing each transition trajectory
with the BAU scenario, using consumption per class (EEI/BTU) and the AA demand and
fleet projections. Figure 13 of the manuscript is precisely defined as “Sensitivity Analysis
of TTR Variation—Optimized Range”.
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2% 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
4% 69% 69% 68% 68% 68% 67% 67% 66% 66% 65% 65% 64% 64% 63% 62% 62% 61%
6% 41% 40% 40% 40% 39% 38% 38% 37% 37% 36% 36% 35% 34% 34% 33% 33% 32%
8% 29% 28% 28% 28% 27% 26% 26% 25% 25% 24% 24% 23% 22% 22% 21% 21% 20%
10% 22% 22% 21% 21% 20% 20% 19% 19% 18% 18% 17% 16% 16% 15% 15% 14% 14%
12% 18% 18% 17% 17% 16% 16% 15% 15% 14% 13% 13% 12% 12% 11% 11% 10% 10%
14% 15% 15% 14% 14% 13% 13% 12% 12% 11% 10% 10% 9% 9% 8% 8% 7% 7%
16% 13% 13% 12% 12% 11% 11% 10% 10% 9% 8% 8% 7% 7% 6% 6% 5% 5%
18% 12% 11% 11% 11% 10% 13% 8% 8% 7% 7% 6% 6% 5% 5% 4% 4% 4%
20% 11% 10% 10% 10% 8% 8% 7% 7% 6% 5% 5% 4% 4% 4% 3% 3% 3%
22% 10% 9% 9% 9% 7% 7% 6% 6% 5% 4% 4% 4% 3% 3% 2% 2% 2%
24% 9% 8% 8% 8% 6% 6% 5% 5% 4% 4% 3% 3% 2% 2% 2% 2% 1%
26% 8% 8% 7% 7% 6% 5% 5% 4% 3% 3% 3% 2% 2% 2% 1% 1% 1%
28% 7% 7% 6% 6% 5% 5% 4% 3% 3% 2% 2% 2% 1% 1% 1% 1% 1%
30% 7% 6% 6% 6% 5% 4% 3% 3% 2% 2% 2% 1% 1% 1% 1% 1% 0%
32% 6% 6% 5% 5% 4% 3% 3% 2% 2% 2% 1% 1% 1% 1% 1% 0% 0%
34% 6% 6% 5% 5% 4% 3% 3% 2% 2% 1% 1% 1% 1% 0% 0% 0% 0%
36% 6% 5% 5% 5% 3% 3% 2% 2% 1% 1% 1% 1% 0% 0% 0% 0% 0%
38% 5% 5% 4% 4% 3% 2% 2% 1% 1% 1% 1% 0% 0% 0% 0% 0% 0%
40% 5% 5% 4% 4% 3% 2% 2% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0%
42% 5% 4% 4% 4% 2% 2% 1% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0%
44% 5% 4% 3% 3% 2% 2% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0%
46% 4% 4% 3% 3% 2% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%
48% 4% 4% 3% 3% 2% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%
50% 4% 4% 3% 3% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
52% 4% 3% 3% 3% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
54% 4% 3% 3% 3% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
56% 4% 3% 2% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
58% 4% 3% 2% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
60% 3% 3% 2% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
62% 3% 3% 2% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
64% 3% 3% 2% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
66% 3% 3% 2% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
68% 3% 2% 2% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
70% 3% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
72% 3% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
74% 3% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
76% 3% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
78% 3% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
80% 3% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
82% 2% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
84% 2% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
86% 2% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
88% 2% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
90% 2% 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
92% 2% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
94% 2% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
96% 2% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
98% 2% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
100% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Figure 13. TTR Variance Sensitivity Analysis—Optimized Variance Range.

5. Conclusions
Despite the methodological limitations inherent in the Paraguayan data context, this

study represents the first scientific evidence demonstrating the direct and contemporary
relationship between temperature and the demand of Paraguay’s National Interconnected
System (SIN), corroborating the hypothesis proposed by the ANDE. It was shown that
approximately 20% of the variability in electricity demand can be explained by temperature
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“shocks,” highlighting the need to consider climatic factors in energy planning. Additionally,
the analysis indicated that the “cooling load” associated with air conditioning accounts
for 34–36% of maximum demand, illustrating how uncontrolled AC expansion and the
lack of effective regulations can significantly increase demand peaks during periods of
high temperatures.

From a mitigation perspective, the adoption of EE measures—such as the implemen-
tation of AC labeling and the TTR—proved critical in postponing early investments in
additional generation, transmission, and distribution capacity while strengthening the
system’s resilience to extreme climatic events. In this context, the recent enactment of
Presidential Decree 2853, which includes the National Energy Efficiency Labeling Program
and establishes the gradual application of minimum energy performance standards for
selected products, represents a crucial advancement. This study provides robust technical
evidence supporting the implementation of this policy and underscores that such initiatives
are essential for promoting efficient energy consumption in Paraguay.

Surpassing the contributions of previous studies—limited to verifying the climate-
demand relationship without accurately estimating the cooling load or offering concrete
mitigation strategies, this work reinforces the importance of establishing technical and
regulatory tools to move toward more sustainable energy consumption. Furthermore,
the findings offer a valuable technical basis for evaluating future regulations, such as a
potential Energy Efficiency Law, highlighting their relevance in energy planning, climate
change adaptation, and achieving Sustainable Development Goals (SDGs) 7 and 13.
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AC Air Conditioning
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ANDE National Electricity Administration
SIN National Interconnected System
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VAR Vector Autoregressive
INE National Statistics Institute
BTU/h Cooling capacity
EEI Energy Efficiency Index
TTR Technological Transition Rate
BAU Business-As-Usual
SDGs Sustainable Development Goals
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